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ABSTRACT 
 
Over the years, numerous experiments have been carried 

out on different methods for accurate state-of-charge 

estimation. Neural networks have so far been the most utilized 

machine learning estimation method due to their ability to 

achieve high estimation performance. In this study, the 

foundation of a neural network is laid by investigating the 

most important parameter of the algorithm; the Optimization 

technique. First, the gradient descent optimizer is examined, 

then it is developed from scratch with the Python 

programming language. Finally, the functionality of this 

developed optimizer is confirmed by implementing it in a 

single-neuron NumPy machine learning algorithm. 
 

1. Introduction 
  

  Of all the roles of the Battery Management System (BMS,) 

state of charge (SoC) estimation is the primary and most 

crucial criterion. As of now, the common methods of 

estimating a battery’s state of charge are conventional 

method, model-based method, and data-driven method.  

Unlike the other methods, the data-driven method does not 

require the simulation of a battery model, or information about 

the internal parameters of the battery. This method is a direct 

offline learning of the nonlinear relationship between the SoC 

and battery variables like voltage, current, and temperature, 

with the use of a machine learning (ML) model or algorithm. 

Neural Networks (NN) has so far been the most utilized 

algorithm due to its ability to extract more hidden details from 

the input data which in turn improves the accuracy of the 

estimation[1]. Node layers, which include an input layer, one 

or more hidden layers, and an output layer, make up neural 

networks. Each node, otherwise known as a neuron, is 

connected to other nodes and has a weight and bias that go 

along with it. An optimizer that assigns weights and bias to 

each layer is chosen for a model, and as the model is being 

trained, the weights and biases of each node are adjusted by 

the optimizer so as to get the closest possible result to the 

SoC as possible. 

This study aims to lay the foundation of a neural network 

model by investigating the Optimization technique. The 

optimization technique is essential in order to achieve the best 

values for the weights and biases of NN models under various 

circumstances. 

 

2. Gradient Descent Modelling 

Fig.1 Gradient descent representations: a) 3D representation, 

and b) 2D representation 

 
  The mini-batch gradient descent will be developed in this 

study. The dataset will be divided into ten batches, and a 

function will be built to model this optimization technique 

from scratch. This function will take in seven arguments as 

input; The dataset (which includes the battery variables), 

the target SoC values, the initial gradient descent 

parameters (initial weights and initial bias), the gradient 

function, the cost function, the learning rate or alpha, and 

finally the desired number of iterations. Gradient descent 

starts at the initiation point, moving steadily downward until 

it reaches the point where the cost function is as minimal 

as possible as illustrated in Fig. 1.  

 

2.1 Gradient Function 
This function is responsible for evaluating the weights and 

bias changes in relation to the change in cost. 

The weight parameter calculation is done with eqs. (1), 

while the bias parameter calculation is done with eqs. (2). 

 
𝑤𝑛  = 𝑤𝑛−1  −  𝛼

𝑑
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wn is the updated weight, wn-1 is the initial weight at the start 

of the computation, α is alpha which is the learning rate of the 

algorithm, and 
𝑑

𝑑𝑥
𝐽(𝑤, 𝑏) is a multi-variable derivative term. 

Likewise, bn is the updated bias, and bn-1 is the initial bias at 

the start of the computation. 

 
2.2 Cost Function 
Thanks to the cost function, we can improve the algorithm's 

performance by knowing how well it is performing. Depending 

on the different values of weights and bias for each iteration,  

  

(a) (b) 

- 630 -

전력전자학술대회�논문집�2023.�7.�4~6



 

  Fig.2 Gradient descent algorithm flowchart  

 

the cost function will return the cost of utilizing these 

parameters.  

The squared error cost function is utilized in this study 

because we must account for negative errors and eqs. (3) 

shows the expression of the cost function. 

  𝐽(𝑤, 𝑏) =  
1

𝑚
 ∑  (𝑦𝑛̂ −  𝑦𝑛)2𝑚

𝑛=1   (3) 

J(w,b) is the cost of implementing the weights w and bias b, 

m is the total number of training examples in the dataset, 𝑦̂ 

is the predicted SoC value after implementing the updated w 

and b, and y is the reference SoC value. 

 
3. Gradient Descent Function & Results 

 
  At the start of the algorithm, an empty array called “J array” 

is initialized where the costs, J, of each iteration will be stored 

for investigation. The first set of weights and bias that which 

will be implemented is manually inputted, then using these 

parameters, the gradient function will compute the next set of 

weights and bias that gets the cost closer to the local minimum. 

The cost of implementing these parameters will be calculated 

by the cost function and the result will be recorded in the J 

array. A single-neuron NumPy function which has a functional 

composition, N(f(xn)) is embedded in this algorithm. The 

neuron calculates the weighted sum of the input values as 

expressed in eqs. (4). 

  f(𝑥𝑛 ) = 𝑊𝑥𝑛 + 𝑏 (4) 

The procedures carried out by this optimizer are illustrated in 

Fig. 2. To test and confirm the functionality of this gradient 

descent algorithm, a battery dataset from the Battery 

Research Group of the Center for Advanced Life Cycle 

Engineering (CALCE)[2] was employed. The dataset was 

compiled from tests performed at various temperatures on an 

A123 LifePO4 battery. This dataset was selected because 

experiments were performed by simulating two driving cycles; 

the dynamic stress test (DST), and the federal urban driving 

schedule (FUDS). 

The gradient descent algorithm was implemented for both 

driving profiles, and a large number of iterations was chosen 

for each case because a single-neuron algorithm is used to 

test the gradient descent algorithm and not a full neural 

network. 1000 iterations for the DST driving cycle data were 

completed, and the loss decreased significantly for the first 

300 iterations before progressively decreasing till the end of  

Fig.3 Cost convergence curve: a) DST profile, b) FUDS profile 

 

all iterations. After about 920 iterations, the loss was constant 

at 162.94 which means it has reached the local minima of that 

neuron. For the FUDS cycle data, 2000 iterations were 

carried out. Like the DST data, the loss dropped drastically 

for the first 500 iterations and there was a gradual reduction 

until the completion of the whole iterations. The cost in the 

neuron began to converge after 1300 iterations before 

becoming constant at 168.29. The cost curves for both drive 

cycles are shown in Fig. 3. 

 
4. Conclusion 

 
  This study identifies and investigates the most important 

parameter of the neural network model; the optimizer. The 

gradient descent optimization technique was built from 

scratch and the functionality was tested with a single-neuron 

NumPy algorithm. The functionality was tested with a battery 

dataset of two drive cycles. Iterations for both profiles 

showed cost reduction while converging to the local minimum, 

and the cost convergence of this algorithm proved that the 

developed gradient descent algorithm can be effectively 

implemented in a neural network model for SoC estimation. 
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