
Functionality of Optimization Techniques in Machine Learning for SoC Estimation

Okemakinde Femi, Kim Jonghoon
Energy Storage Conversion Lab., Chungnam National University

ABSTRACT

Over the years, numerous experiments have been carried

out on different methods for accurate state-of-charge

estimation. Neural networks have so far been the most utilized

machine learning estimation method due to their ability to

achieve high estimation performance. In this study, the

foundation of a neural network is laid by investigating the

most important parameter of the algorithm; the Optimization

technique. First, the gradient descent optimizer is examined,

then it is developed from scratch with the Python

programming language. Finally, the functionality of this

developed optimizer is confirmed by implementing it in a

single-neuron NumPy machine learning algorithm.

1. Introduction

 Of all the roles of the Battery Management System (BMS,)

state of charge (SoC) estimation is the primary and most

crucial criterion. As of now, the common methods of

estimating a battery’s state of charge are conventional

method, model-based method, and data-driven method.

Unlike the other methods, the data-driven method does not

require the simulation of a battery model, or information about

the internal parameters of the battery. This method is a direct

offline learning of the nonlinear relationship between the SoC

and battery variables like voltage, current, and temperature,

with the use of a machine learning (ML) model or algorithm.

Neural Networks (NN) has so far been the most utilized

algorithm due to its ability to extract more hidden details from

the input data which in turn improves the accuracy of the

estimation[1]. Node layers, which include an input layer, one

or more hidden layers, and an output layer, make up neural

networks. Each node, otherwise known as a neuron, is

connected to other nodes and has a weight and bias that go

along with it. An optimizer that assigns weights and bias to

each layer is chosen for a model, and as the model is being

trained, the weights and biases of each node are adjusted by

the optimizer so as to get the closest possible result to the

SoC as possible.

This study aims to lay the foundation of a neural network

model by investigating the Optimization technique. The

optimization technique is essential in order to achieve the best

values for the weights and biases of NN models under various

circumstances.

2. Gradient Descent Modelling

Fig.1 Gradient descent representations: a) 3D representation,

and b) 2D representation

 The mini-batch gradient descent will be developed in this

study. The dataset will be divided into ten batches, and a

function will be built to model this optimization technique

from scratch. This function will take in seven arguments as

input; The dataset (which includes the battery variables),

the target SoC values, the initial gradient descent

parameters (initial weights and initial bias), the gradient

function, the cost function, the learning rate or alpha, and

finally the desired number of iterations. Gradient descent

starts at the initiation point, moving steadily downward until

it reaches the point where the cost function is as minimal

as possible as illustrated in Fig. 1.

2.1 Gradient Function
This function is responsible for evaluating the weights and

bias changes in relation to the change in cost.

The weight parameter calculation is done with eqs. (1),

while the bias parameter calculation is done with eqs. (2).

𝑤𝑛 = 𝑤𝑛−1 − 𝛼

𝑑

𝑑𝑤
𝐽(𝑤𝑛−1 , 𝑏𝑛−1)

(1)

𝑏𝑛 = 𝑏𝑛−1 − 𝛼

𝑑

𝑑𝑏
𝐽(𝑤𝑛 , 𝑏𝑛−1)

(2)

wn is the updated weight, wn-1 is the initial weight at the start

of the computation, α is alpha which is the learning rate of the

algorithm, and
𝑑

𝑑𝑥
𝐽(𝑤, 𝑏) is a multi-variable derivative term.

Likewise, bn is the updated bias, and bn-1 is the initial bias at

the start of the computation.

2.2 Cost Function
Thanks to the cost function, we can improve the algorithm's

performance by knowing how well it is performing. Depending

on the different values of weights and bias for each iteration,

(a) (b)

- 630 -

전력전자학술대회�논문집�2023.�7.�4~6

 Fig.2 Gradient descent algorithm flowchart

the cost function will return the cost of utilizing these

parameters.

The squared error cost function is utilized in this study

because we must account for negative errors and eqs. (3)

shows the expression of the cost function.

 𝐽(𝑤, 𝑏) =
1

𝑚
 ∑ (𝑦𝑛̂ − 𝑦𝑛)2𝑚

𝑛=1 (3)

J(w,b) is the cost of implementing the weights w and bias b,

m is the total number of training examples in the dataset, 𝑦̂

is the predicted SoC value after implementing the updated w

and b, and y is the reference SoC value.

3. Gradient Descent Function & Results

 At the start of the algorithm, an empty array called “J array”

is initialized where the costs, J, of each iteration will be stored

for investigation. The first set of weights and bias that which

will be implemented is manually inputted, then using these

parameters, the gradient function will compute the next set of

weights and bias that gets the cost closer to the local minimum.

The cost of implementing these parameters will be calculated

by the cost function and the result will be recorded in the J

array. A single-neuron NumPy function which has a functional

composition, N(f(xn)) is embedded in this algorithm. The

neuron calculates the weighted sum of the input values as

expressed in eqs. (4).

 f(𝑥𝑛) = 𝑊𝑥𝑛 + 𝑏 (4)

The procedures carried out by this optimizer are illustrated in

Fig. 2. To test and confirm the functionality of this gradient

descent algorithm, a battery dataset from the Battery

Research Group of the Center for Advanced Life Cycle

Engineering (CALCE)[2] was employed. The dataset was

compiled from tests performed at various temperatures on an

A123 LifePO4 battery. This dataset was selected because

experiments were performed by simulating two driving cycles;

the dynamic stress test (DST), and the federal urban driving

schedule (FUDS).

The gradient descent algorithm was implemented for both

driving profiles, and a large number of iterations was chosen

for each case because a single-neuron algorithm is used to

test the gradient descent algorithm and not a full neural

network. 1000 iterations for the DST driving cycle data were

completed, and the loss decreased significantly for the first

300 iterations before progressively decreasing till the end of

Fig.3 Cost convergence curve: a) DST profile, b) FUDS profile

all iterations. After about 920 iterations, the loss was constant

at 162.94 which means it has reached the local minima of that

neuron. For the FUDS cycle data, 2000 iterations were

carried out. Like the DST data, the loss dropped drastically

for the first 500 iterations and there was a gradual reduction

until the completion of the whole iterations. The cost in the

neuron began to converge after 1300 iterations before

becoming constant at 168.29. The cost curves for both drive

cycles are shown in Fig. 3.

4. Conclusion

 This study identifies and investigates the most important

parameter of the neural network model; the optimizer. The

gradient descent optimization technique was built from

scratch and the functionality was tested with a single-neuron

NumPy algorithm. The functionality was tested with a battery

dataset of two drive cycles. Iterations for both profiles

showed cost reduction while converging to the local minimum,

and the cost convergence of this algorithm proved that the

developed gradient descent algorithm can be effectively

implemented in a neural network model for SoC estimation.

This research was supported by the National Institute of

Information and Communications Technology Evaluation and

Planning with financial resources from the government

(Ministry of Science and ICT) in 2022 (No. 2022-

1711152629, Functionality of Optimization Techniques in

Machine Learning for SoC Estimation)

참 고 문 헌

[1] Shijie Tong, Joseph H. Lacap, Jae W. Park, “Battery state

of charge estimation using a load-classifying neural

network,” Journal of Energy Storage, Vol. 7, No. 2, pp.

236–243, 2016.

[2] Center for Advanced Life Cycle Engineering (CALCE):

Lithium-ion Battery Experimental Data. Available:

https://www.calce.umd.edu/battery-data (accessed Apr.

07, 2023).

 (a) (b)

- 631 -

https://www.calce.umd.edu/battery-data

